Con procesamiento de imágenes se analizaron más de 50 horas de video de personas sanas para encontrar patrones funcionales humanos Si se diagnostica a tiempo se podría brindar mejor calidad de vida a pacientes, señalan investigadores en este proyecto
Para detectar de manera temprana y no invasiva los primeros síntomas de Alzheimer, el investigador del Instituto Politécnico Nacional (IPN), Jesús Alejandro Acosta Franco, desarrolló una herramienta tecnológica que, mediante inteligencia artificial, automatiza el análisis de los movimientos corporales de rendimiento cognitivo y funcional humano.
En un trabajo sin precedentes en la literatura científica, el maestro en Ciencias en Sistemas Digitales por el Centro de Investigación y Desarrollo de Tecnología Digital (Citedi), analizó más de 50 videos de personas sanas con algoritmos de procesamiento de señales, imágenes e inteligencia artificial, para reconocer patrones funcionales y definió los principales marcadores biomecánicos humanos.
Los videos forman parte de un archivo de datos públicos del Instituto de Tecnología de Georgia, Estados Unidos. En ellos, los individuos desarrollan actividades instrumentales de la vida diaria (AIVD), que incluyen contar dinero, preparar alimentos, utilizar la lavadora, escribir y hacer manualidades, entre otras acciones que requieren ciertas capacidades cognitivas.
“La principal herramienta que utilizamos son los videos multimedia, captados incluso con celular, para observar el comportamiento de las personas al realizar algunas de las actividades cotidianas y, de acuerdo con una métrica utilizada por geriatras, detectar algunas deficiencias en los movimientos o en capacidades cognitivas”, indicó el también ingeniero biomecánico.
Con la asesoría de los profesores del Citedi, Alejandro Álvaro Ramírez Acosta y Ciro Andrés Martínez García Moreno, así como del especialista en geriatría Clemente Humberto Zúñiga Gil, el egresado politécnico reportó resultados muy alentadores, con precisión media de 73.74 por ciento en el reconocimiento de patrones funcionales humanos relacionados con la cinemática de los instrumentos y de 59.84 por ciento en el análisis del patrón prensil de manos.
Alejandro Acosta consideró que este tema de investigación es de alta pertinencia social, al ser una enfermedad que modifica radicalmente el estilo de vida del paciente y de sus familiares, y que al ser diagnosticada a tiempo se podría brindar mejor calidad de vida a pacientes.
El proyecto, desarrollado en el Laboratorio de Aprendizaje Profundo e Indexación Multimedia (APIM) del Citedi, a cargo de Mireya Saraí García Vázquez, también forma parte de la tesis Caracterización de deficiencias egocéntricas y alocéntricas con aprendizaje profundo en la enfermedad de Alzheimer, con la que Jesús Alejandro Acosta Franco obtuvo el grado de maestro en Ciencias en Sistemas Digitales, con mención honorífica.
Este trabajo también fue reconocido en el Tercer Seminario Interdisciplinario en Investigación sobre Envejecimiento, organizado por el Instituto Nacional de Geriatría de México.